Features

Claire Wemp is hot on the trail of better thermal interface materials and more engineering roles for women.

Thermal interface materials (TIM) are used between components to help with heat dissipation. Claire Wemp, Ph.D., is a thermal applications engineer at DuPont, with a doctorate in mechanical engineering, where her research was on heat transfer enhancement for metal surfaces. While an undergraduate, Wemp also became involved in the Society of Women Engineers, and continues to work with the nonprofit professional organization today. Wemp joined PCD&F/CIRCUITS ASSEMBLY on the PCB Chat podcast, where she discussed the use of TIMs and her work with SWE. What follows is a lightly edited transcript.

Read more ...

For students at Palomar Community College, a finely-tuned design curriculum is just the beginning.

It goes without saying that finding talent is a big deal in electronics hardware development. Outside of internal training programs, talent development falls to the handful of colleges, universities and third parties involved in teaching printed circuit design and manufacturing.

One of the original providers is Palomar College, located in San Marcos, CA, part of San Diego County. The community college has offered practical printed circuit design coursework since the mid-1990s.

Read more ...

Effects of types of TIM types, thicknesses and contact pressure in a real-world application.

Power electronics are integral parts of power components, power supplies, 5G networks, automotive and defense/space applications. All modern power electronics have two critical factors in common that drives the need for unprecedented thermal management: first, increased transistor density to meet the higher demand in increased computing power and second, component miniaturization leading to higher heat flux. It is well known in the electronics reliability field that 55% of the component failures in electronics devices are related to excess heat. The Arrhenius equation in Eq. 11 predicts that, for electronics, the lift of the device decreases by half2 by increasing the device temperature by 10°C. Design engineers mitigate this issue by carefully selecting thermal interface materials (TIM) to keep the system/device temperature at the desired level.

Read more ...

Summary statistics can be misleading, but in different ways.

Cpk and Ppk are numeric capability summaries of process or product characteristics based on common cause variation (due to chance) and assignable cause variation (special cause). Understanding these capability indices and their limitations is critical in pursuing world-class quality, "on target with minimal variation." Cpk and Ppk indices are reviewed, and details on how to use them synergistically are provided.

Read more ...

Two unique equations can be used when fusing a trace – each offering its own strengths and weaknesses.

Up until about 10 years ago, when PCB designers searched for information about the current needed to melt a trace on their boards, only two names popped up in the literature, W. H. (Sir William Henry) Preece and I. M. Onderdonk. Each is credited with developing a unique equation, bearing their respective name, and those equations became the basis for many PCB calculations.

Read more ...

Methods for assessing component temperatures and fan performance.

Cloud technology has become increasingly prevalent, allowing use of 3-D models and numerical methods to analyze CAD models of electronic devices and components. Numerical computations of conduction, convection and radiation are essential for understanding how these heat transfer mechanisms can be utilized for effective cooling techniques.

Read more ...

Page 13 of 89

Subcategories