Getting all the parts and processes aimed in the same direction.
Printed circuit board technology never sleeps. At this very moment, engineering teams are working out ways to increase circuit density with finer-pitch devices. When it comes to placing these components on a PCB, the margin of error shrinks along with the pin pitch. Let’s look at how we can enable these parts on the assembly line.
The first step in mass production of a PCB assembly is preparing the board to take components. The boards may be baked in an oven prior to starting the assembly process. Although they are packed in sealed containers with a little bag of desiccant, the sponge-like dielectric materials still absorb water one molecule at a time. Prebaking releases the steam that could interfere with reflow soldering.
Ideally, all parts on a board will use the same type of technology and will be roughly the same class of components in terms of pin-pitch and other physical aspects (FIGURE 1). Tall and heavy components plus small and light ones are not a good mix. Tall ones create so-called shadows where the surrounding area doesn’t get as hot during soldering.
To continue reading, please log in or register using the link in the upper right corner of the page.
Raising the topline with good execution will make up for the expense of expediting development.
There is a simple equation when it comes to counting profits. The fixed and overhead costs must be less than the revenue for there to be profit. The first units out of the gate owe the company for all the nonrecurring engineering (NRE) costs. The item will be in the red until all that is paid back by the margin between unit cost and unit price.
In many sectors of the economy, particularly commercial, the cost of goods sold (COGS) is close to the selling price, meaning little margin after overhead is accounted for. (PCB design is among the overhead costs.) Many units must leave the factory and find a consumer before the project hits the breakeven point. Product cycles are such that price erosion puts the squeeze on margins right from the beginning. Consumer hardware is a tough game, no doubt.
Competition among the players keeps us on the path of continuous improvement. Sitting still while others strive to grab your market share actually means moving backward, so let’s take it for granted that we have to keep reinventing our products. Those new features, whatever they are, will likely add to the bill of materials (BoM), which increases the variable costs. We can soften that blow with a few money-saving methods.
To continue reading, please log in or register using the link in the upper right corner of the page.
You need a buffer zone.
The truth shall set you free. The truth table of a logic device determines the outcome of a logical operation. A handful of operations are described as gates. The gates are named for the function that applies. To start, two main ones are the AND gate and OR gate. Both usually have two inputs and one output.
You may have a hallway or stairwell light in your home with a light switch at either end. When both switches are in the down position, the light is on. When both are up, the light is also on. If one is up and the other down, the light is off. The truth table for those two switches is shown in TABLE 1.
To continue reading, please log in or register using the link in the upper right corner of the page.
A printed circuit is an antenna for transmitting and receiving energy.
A raging fraternity party with thumping house music can be annoying as the morning hours approach. Noise suppression ordinances to the rescue! The partiers have two choices: quiet down or get shut down.
In that sense, the fraternity party is like building an electronic circuit. If our machines make too much “noise” in any part of the spectrum, it’s game over.
Just like kids can stop trampling everyone’s lawn and come inside, shut the doors, windows, shutters and even the fireplace flue, we can also contain unwanted spectral emissions. Left unchecked, a printed circuit is an antenna for transmitting and receiving energy from within and outside the board.
Even a well-designed PCB has compromises. Our goal is to be ready to react to spurious emissions that take us beyond the allowable threshold. We start with a power budget, and a noise floor, and our electronics must comply with those design criteria while meeting regulatory requirements.
As we bring different functions aboard, the problems in the near field multiply. We think of high-speed transmission lines as the focus of our EMI abatement efforts. They are seen as the cause of the problem, owing to their signal rise times or a harmonic of that momentary event.
To continue reading, please log in or register using the link in the upper right corner of the page.