Press Releases

AURORA, CO ― February 2026 ― AdvancedPCB has installed a MASS VCP-5000 Vacuum Via Filling System at its Santa Clara facility, increasing capacity for advanced HDI and high-reliability printed circuit board builds in Silicon Valley. This investment is part of the company’s 2026 Technology Acceleration Initiative.

The MASS VCP-5000 is a vacuum chamber plugging system designed to achieve void-free via filling through a controlled vacuum-assisted process. The technology supports complex HDI constructions, including stacked and staggered microvias, filled and capped vias, and high layer-count designs where uniform copper distribution and structural integrity are critical.

As electronic systems continue to shrink while increasing in power density, via quality plays a direct role in long-term reliability and thermal performance. The VCP-5000 improves consistency across panels by ensuring uniform resin fill and stable processing conditions, helping reduce variability and increase overall yield, particularly in multilayer and high-aspect-ratio applications.

“This investment expands our ability to support customers pushing the limits of HDI complexity and long-term PCB reliability,” said Greg Halverson, CEO of AdvancedPCB. “New designs coming from our customers demand precision at every layer. The VCP-5000 gives us tighter control over one of the most critical steps in high-density board fabrication.”

Located in the center of the semiconductor ecosystem, AdvancedPCB’s Santa Clara operation supports customers producing AI hardware, high-performance computing platforms, and other dense electronic architectures requiring stacked microvias and high layer counts. The addition of advanced vacuum via filling further expands West Coast manufacturing capability for these demanding applications.

AdvancedPCB’s 2026 Technology Acceleration Initiative includes coordinated investments across multiple U.S. facilities to enhance advanced fabrication processes, increase capacity, and strengthen domestic manufacturing infrastructure for high-performance electronics programs.

For more information, visit www.AdvancedPCB.com.

Leoben/Graz, February 11, 2026 – AT&S is setting another strategic milestone for the technological future of Europe and is funding the establishment of a new research group at Graz University of Technology (TU Graz) in the field of microelectronics with a focus on IC substrates and advanced packaging technologies. The new research area combines expertise from three institutes of the Faculty of Electrical Engineering and Information Technology at TU Graz. The aim is the sustainable development of an interdisciplinary field of research and education that focuses on those technologies that make modern microchips powerful, efficient and applicable.

The research group, financed by AT&S for a period of five years, will be anchored at the Institute of Electronics, the Institute of Electrical Drives and Power Electronic Systems and the Institute of High Frequency Technology at Graz University of Technology. Outstanding scientific personalities are being sought for two PhD and one PostDoc position as well as a career professorship to build up the research area. Together they should form an internationally visible research group that develops innovative approaches for IC substrates and advanced packaging technologies. In addition to research, involvement in teaching and the promotion of young talent are key elements of the initiative.

With this step, AT&S is consistently pursuing a long-term research and development strategy: following the opening of the first European competence center for research, development and IC substrate production in Leoben (“Hinterberg 3”) last year, the company is now also strengthening university research. The close integration of industrial practice, cutting-edge research and training is thus being further intensified.

Research for the next generation of microelectronics

The new research area focuses on advanced packaging technologies and IC substrates, a field of knowledge that is rapidly gaining in importance worldwide and is indispensable for high-performance computers, artificial intelligence, networked industrial systems and applications in mobility and medical technology. IC substrates form the technological platform on which modern chips can develop their full potential, even if the requirements for computing power, miniaturization and energy efficiency continue to increase.

“This research initiative is a targeted investment in our technological future,” says Peter Griehsnig, Chief Technology Officer (CTO) of AT&S. “Since semiconductor chips alone can no longer enable rapid progress, microelectronics must now be considered as a complete system. Only in combination with highly developed substrates and packaging technologies the full innovation potential of microelectronics can be exploited. It is precisely this complementary knowledge that we want to systematically expand together with TU Graz.”

Graz University of Technology also emphasizes the importance of the initiative: “The close interlinking of scientific excellence and industrial innovative strength brings new technologies into application much faster,” says Horst Bischof, Rector of Graz University of Technology. “The common goal of AT&S and TU Graz is to make systems with integrated circuits more powerful, more compact, more reliable and more energy-efficient. With this initiative, we are jointly taking an important step towards strengthening Europe’s technological sovereignty and the competitiveness of the location in the long term.”

mSAP enables AT&S to manufacture printed circuit boards and IC substrates of a size and complexity that almost rivals products from the semi-conductor industry. mSAP stands for “modified semi-additive process” – a technology in which the conducting paths used to conduct signals on a printed circuit board or substrate are not etched out of a copper layer in the usual way. Instead, the conductive material is only applied to the PCB in places where it is actually needed. Unlike the conventional method, this enables significantly tighter signal lines and smaller distances between the conducting paths.

By adopting this technology, AT&S, as a leading PCB manufacturer, is increasing the number of increasingly small structures that can be placed on a PCB. With mSAP, copper is only applied to the places where electricity will later flow. What’s more, it is done so precisely that the conducting paths can be placed closer together. mSAP (Modified Semi Additive Process) takes miniaturization in microelectronics to the next level.

Benefits of mSAP

  • mSAP saves space as it allows denser conducting path layouts. This opens the way for the miniaturization of PCBs and devices.
  • Short signal paths enhance signal transmission on the PCB.
  • mSAP offers better performance at a smaller size.
  • Radically thin PCBs for radically thin devices.
  • mSAP shrinks PCBs, freeing up space for sensors, cameras and larger batteries.

Radical miniaturization

mSAP provides another boost to miniaturization for the electronics industry, as circuits can be planned and realized in exceedingly compact spaces, thanks to their smaller form factor. It also reduces the risk of short circuits on densely packed circuit boards, because (unlike their chemically created counterparts) mSAP conducting paths do not require triangular cross sections. This means that although the distances between the lines grows smaller, there is no risk of signal interference.

With mSAP, powerful electronic circuits can be installed in the smallest of spaces, which is essential for very thin, compact device like smartphones. mSAP (Modified Semi Additive Process) is also ideal for processing the high-frequency signals that will be used by future generations of mobile networks. The compactness of mSAP PCBs and their short signal paths allow them to process high-frequency signals with virtually no loss. mSAP systems have recently proven their worth in the development of cameras for modern smartphones. Only the highly compact mSAP PCBs made it possible to combine multiple cameras in one microelectronic system. Radical miniaturization of this kind also lowers the power requirements – an incredibly important consideration for devices that rely on batteries.

Waterbury, Conn. – February 3, 2026 - Element Solutions Inc (ESI) today announced the completion of its acquisition of the Micromax conductive pastes and inks business, effective February 2, 2026. Micromax will operate within MacDermid Alpha Electronics Solutions, part of ESI’s Electronics segment.

The acquisition strengthens ESI’s position as a leading global supplier of specialized electronic materials serving the electronics design and manufacturing industry. By combining Micromax’s expertise in conductive pastes, inks, and ceramic materials with MacDermid Alpha’s broad electronics materials portfolio, ESI expands its ability to support innovation across advanced and high-reliability electronics applications.

“The acquisition of Micromax is a strong strategic fit for ESI and reinforces our focus on high-value, technology-driven businesses,” said Richard Fricke, President, Electronics, adding “Micromax’s differentiated materials and long-standing customer relationships further strengthen our Electronics segment and expand our ability to support innovation across the electronics manufacturing ecosystem.”

Building Breakthroughs by Leveraging Our Combined Expertise

With Micromax now part of MacDermid Alpha Electronics Solutions, customers gain access to a broader, highly complementary portfolio of advanced electronic materials designed to enable performance, reliability, and design flexibility. The combined portfolio includes thick-film conductive inks compatible with polymer films, glass tapes, metals, and ceramics, as well as Low Temperature Co-Fired Ceramic (LTCC) materials that support high multilayer circuit density and withstand extreme operating environments.

These materials are used in critical electronic functions, such as circuitry, interconnection, and packaging and serve a wide range of end-use markets, including automotive and advanced mobility, telecommunications/5G infrastructure, consumer electronics, aerospace and defense, and medical devices.

“Micromax brings highly complementary technologies and deep materials expertise that align naturally with MacDermid Alpha’s mission,” said Bruce Moloznik, Sr. VP Business Integration, MacDermid Alpha Electronics Solutions. “Together, we are building breakthroughs that help customers accelerate innovation, deliver high reliability, and compete with confidence in demanding electronics markets.”

Discover more here.

COSTA MESA, CA – TTM Technologies has reached a multi-year agreement with Raytheon, an RTX business, to provide radio frequency assemblies, electronic hardware, and printed circuit boards for Raytheon’s Lower Tier Air and Missile Defense Sensor (LTAMDS) program.

Read more: TTM Technologies Inks $200M Agreement with Raytheon for LTAMDS Program

WASHINGTON—Jan. 28, 2026—The Semiconductor Industry Association (SIA) today announced John Neuffer will retire during the middle of 2026 following a highly successful 11-year tenure as SIA president and CEO. SIA represents 99% of the U.S. semiconductor industry by revenue and nearly two-thirds of non-U.S. chip firms.

“John has been an outstanding leader for the semiconductor industry at a time when U.S. technology leadership truly matters,” said Dr. Lisa Su, AMD chair and CEO and 2026 SIA board chair. “He helped strengthen the policy foundation that enables innovation, global competitiveness, and growth across our ecosystem. Because of his leadership, SIA is better positioned to support America’s economy, national security, and long-term technology leadership. On behalf of the Board and SIA team, we thank John for his many contributions and wish him all the best.”

Under Neuffer’s leadership, SIA has secured many impactful policy victories, headlined by enactment and expansion of landmark U.S. semiconductor manufacturing incentives that have sparked more than $600 billion in private investments and put America on course to more than triple domestic chip manufacturing capacity by 2032. The association also secured billions of dollars in federal R&D investments to advance American chip innovation and reinforce U.S. economic and national security.

In addition, SIA successfully advocated for critical trade agreements, including the expansion of the Information Technology Agreement (ITA) and a global deal to prevent governments from charging tariffs on cross-border data transfers, which boosted the competitiveness of the industry. And Neuffer guided SIA through a range of challenges, including global chip shortages and production shutdowns associated with the COVID-19 pandemic.

“It has been a genuine pleasure and an indelible point of pride for me to work alongside so many great leaders in this incredible industry and to play a part in advancing U.S. semiconductor leadership,” said Neuffer. “The challenges we face as an industry are dwarfed by the many opportunities that lie ahead, and I can’t wait to see what’s next. I will miss very much the high-performing team of dedicated professionals at SIA.”

To ensure a smooth transition, Neuffer will retire following the expected midyear appointment of a successor. SIA has retained Korn Ferry, a leading management consulting firm, to lead a comprehensive search.

Page 1 of 321

Subcategories