Flexperts

Nick Koop

The updated rigid-flex specification overhauls copper thickness requirements.

As we start a new year, it’s a good time to review what changed in 2021. In the flex world, the IPC Flexible Circuits Performance Subcommittee worked through the pandemic and released a new revision to IPC-6013. Revision E was released in September, replacing an amended Revision D from April 2018. Some updates and changes are subtle, while others are significant. Many changes attempt to increase clarity.

Let’s start at the finish – final finish, that is. Tin, silver, and ENIG/ENEPIG will not have minimum thicknesses in IPC-6013. Instead, we are defaulting to the new IPC-4552/4553/4554/4556 specs for thickness and sampling frequency. This avoids unintended differences or conflicts as the finish specs are updated.

Often questions arise related to the rigid-to-flex transition – and what is delamination versus non-lamination? In paragraph 3.3.1.3, we added an explanation about what’s happening at the transition and a new Figure 3-1B to provide a more visual explanation of what is acceptable and rejectable.

Flex circuits have always been more prone to questions about foreign material or entrapped particles. Unlike rigid boards, flex circuits are more transparent, making cosmetic anomalies more evident. Once noticed, disposition is required. We expanded Section 3.3.2.4 to provide more clarity on acceptability, including prepreg resin that may deposit on the external surfaces of flex regions of rigid-flex.


Changes are often made to the spec based on input or questions from users. The team received questions about what holes should be evaluated for hole pattern accuracy. Some questioned the need to inspect all hole locations, especially interconnect vias, which do not have components attached. Most drawings do not have all holes physically dimensioned, relying solely on the CAD data file. Moreover, annular ring requirements control hole locations. We added clarifying verbiage in paragraph 3.4.1 indicating only those holes specifically dimensioned on the drawing itself should be inspected for pattern accuracy.

IPC has always required fillets at the pad/trace junction for Class 1 and 2 designs. If they did not exist or were not allowed, it was implied Class 3 annular ring was required. To be more direct, we added to paragraph 3.4.2 explicitly requiring 0.001" minimum annular ring if no fillets are present.

HDI features within rigid-flex products have been rapidly adopted and include employing blind vias and microvias. Often these vias are “via-in-pad plated over,” meaning the via is in the middle of an SMT pad. Questions related to the inevitable dimple or bump created by this via included, “Was it rejectable like any surface anomaly in the pristine area of an SMT pad?” We modified the overall requirement for anomalies in the pristine area to limit the dimple or protrusion vertical dimension to match the dimple protrusion requirement for filled vias.

In the same vein of HDI features, if microvias or blind vias are on both top and bottom layers of a board, thermal stress coupons must reflect these via structures; we included this language in the specification. In addition, both the top and bottom via structures must be directly exposed to the solder. This may result in testing extra coupons to accommodate this requirement.

Another IPC activity across multiple specifications attempts to discern between dewetting and the natural high/low variations in the hot air solder and solder reflow processes. In hot air solder leveling (HASL), it is common to see solder pooled up toward the trailing edge of the pads. This is a mechanical issue caused by the air knife blowing the solder to one end of a pad. In addition, surface tension of solder tends to cause mounding of the solder. The following note has been added to IPC-6013 (and will be added to IPC-6012 and J-STD-003): This thickness variation is a natural occurrence and is not rejectable.

An attempt was made to clarify maximum copper plating wicking condition in a plated through-hole. Wicking occurs when the copper plating “wicks” down the glass weave bundles in areas where the resin is removed or is not intimately joined to the glass. There has been confusion between etchback, wicking and a combination of the two attributes. While the new wording is improved, it is still not clear enough. The IPC team stepped back and created a tiger team to revise this topic in its entirety. Stay tuned for a complete rework of the etchback and wicking requirements in IPC-6012 and -6013, either in the next revision or an amendment in the near future.

2 flexperts figure 1

FIGURE 1. If there is a specific minimum thickness of copper on certain layers, explicitly state it on the drawing to ensure it is accounted for.

Probably the biggest change was an overhaul of the copper thickness requirements after processing. After much discussion, debate, and finally consensus, the entire section was rebuilt:

  • It differentiates between unplated and plated internal layers, as well as external plated layers.
  • The new requirement permits more reduction of the initial base foil, provided the total copper thickness requirement is met after plating.
  • For button-plated designs, it clarifies copper thickness outside the button area to meet the internal layer foil requirements, not the external (plated) requirement.
  • Absence of copper at the knee of the hole may be acceptable if other requirements are met.
  • The thickness table was simplified by eliminating columns.

Much of the discussion related to this section revolved around assumptions and expectations. Given the wide spectrum of via structures and plating and planarizing processes, it is not prudent for designers to assume a certain minimum thickness of copper on any given layer. If a designer has a true need for a specific minimum thickness of copper on certain layers, it is recommended to explicitly state it on the drawing to ensure it is accounted for.

IPC-6013E includes other changes too. Any section that has been changed is highlighted in gray to alert the user.

Changes to the specifications are truly user- and supplier-initiated. Input from members is how we refine and update the specifications. Participation in the process is encouraged. The industry wins when you volunteer, as it helps bring needed changes to specifications. You win as a volunteer, as you get a better understanding of the specifications and build a healthy network of industry experts you can leverage throughout your career. 

NICK KOOP is director of flex technology at TTM Technologies (ttm.com), vice chairman of the IPC Flexible Circuits Committee and co-chair of the IPC-6013 Qualification and Performance Specification for Flexible Printed Boards Subcommittee; This email address is being protected from spambots. You need JavaScript enabled to view it.. He and co-“Flexpert” mark finstad Mark Finstad (This email address is being protected from spambots. You need JavaScript enabled to view it.) will speak at PCB East in April.

Mark Finstad

All the pieces that add up to the right fit.

“I am developing a flexible circuit for my application and will soon be ready for prototypes, followed by production a few months later. A lot of flexible circuit suppliers are out there. How do I know if a vendor is reputable and will meet my needs?”

Many variables must be considered when picking a flexible circuit supplier. Do your homework and find a vendor that is a good fit for the project. It is advisable to also select a vendor that will support your program from prototype through production. Multiple vendors could build to the same Gerber files and overall specifications, but the end-product could have differences due to processing and material variations between suppliers. Switching fabricators midstream can introduce significant risk at a critical time between prototype and production. Following are the items I recommend learning about a vendor before making your sourcing decision:

Circuit application/performance class. This is more about the IPC performance class rather than specific application, but mil-aero, implantable medical devices, and so on generally are specified as IPC Class 3, while most everything else is Class 2. IPC Class 3 is the highest reliability and overall performance class and is usually specified when the product is used in a life-critical application. Class 3 product typically requires more stringent processing controls, QA, and documentation. Suppliers that primarily serve Class 3 users typically “stay in their lane” and build all products to Class 3 performance level regardless of the requirement.

To continue reading, please log in or register using the link in the upper right corner of the page.


Nick Koop

First differentiate between rigid-flex and true flex.

As is often the case with flex circuits, knowing which solder mask to use on flexible circuits is somewhat of a trick question, one with several answers. The decision boils down to circuit construction and design intent.

To start, there are several ways to insulate circuits in the flex world. These include solder mask, coverlay and coverfilm. In most cases, the designer may simply note solder mask per IPC-SM-840 and leave the rest to the fabricator. This allows the fabricator to use the proper mask in the proper setting.

When making a design decision, first differentiate between rigid-flex and true flex circuits.

Let’s cover the easiest one first: rigid-flex. Typically, a rigid-flex construction will have solder mask applied to the external rigid layers to insulate all external traces, as well as define surface mount or BGA pads. It may also provide mask dams between pads to reduce the potential of solder shorts at assembly. This solder mask usually is classified under IPC-SM-840 as a type H solder mask, which denotes a high-reliability solder mask. These are the most common solder masks. Normally green in color, they can be modified for other colors, as desired. It is worth noting that if the color deviates from the as-formulated green option, there may be feature resolution and web size tradeoffs. This is because the additives used to change the color impact how the mask material absorbs light energy during the imaging process. As a result, the fabricator may need to ask for some relief for other colors.

To continue reading, please log in or register using the link in the upper right corner of the page.


Mark Finstad

A little information goes a long way – but can carry added cost.

“My company has traditionally specified the finished thickness for each flex printed circuit (FPC) layer, and total thickness. This is because it’s understood some material layer thicknesses (i.e., adhesives) change during the manufacturing process due to compression and curing. As a purchaser of FPCs, we are less concerned with the initial raw material thickness than the finished thickness.

“We have received feedback, however, that the FPC market in general specifies the raw material thickness used in FPC fabrication, and not finished thickness. The assertion was nearly all customers purchasing FPCs follow this rule to minimize miscommunication. Is this common practice?”

Answer: The level of detail we see on customer drawings is all over the map, but the majority of customers that do specify individual materials will indicate the raw material thicknesses and then the overall finished circuit thickness.

To continue reading, please log in or register using the link in the upper right corner of the page.


Page 5 of 16