Flexperts

Voltage, heater size and material costs all factor into the decision process.

I would like to use a flexible heater in a product I am designing, but I am concerned about cost. Flexible heaters typically seem a lot more expensive than regular (copper) flexible circuits. What is the advantage to using a resistive metal? Why not just use copper for all flexible heaters?

Copper can certainly be used for the heating element material in a flexible heater in many applications. When a design permits copper to be used for the heater, that will usually be the most cost-effective way to go. But how do you know if copper is a good choice for an application?

Cost impacts of copper heating element. The first hurdle to clear to ensure copper is a good cost-effective solution for a heater is the electrical resistance requirement. The biggest problem with using copper as the heating element is that it has very low coefficient of resistance. To get any appreciable resistance in the heating area, very thin copper must be used and element traces made very narrow in order to pack as many lineal inches into the heating area as possible. Both these will work against your goal of reducing costs. Also, base laminates that are clad with less than 0.5oz copper thickness are typically more expensive due to their fragile nature, and industry use of materials this thin is far less than use of 0.5oz or 1oz copper thicknesses. Another drawback of narrow traces is that the manufacturer's yields will be less optimal, which in turn equates to a higher selling price of the end-product. Another downside to incorporating very narrow traces that many designers fail to take into account is the trace width variations from part to part due to etch tolerances.

Read more: Copper vs. CuNi for Flexible Heater Elements

Rigid-flex can meet the speed you need – with the right design and materials.

I am designing G a rigid-flex and was just told it will be higher frequency. What do we have to do differently?

Answer: As the phrase goes, "I feel the need...the need for speed!" We are seeing more and more applications with signal speeds in the GHz ranges. As clock speeds on chips increase, it is important for the circuit boards to keep up the pace.

When it comes to high speed, rigid-flex is very capable of meeting the challenge. It all comes down to good design and material selections.

For the high-speed signals, think in all three dimensions. Map out which layers carry these signals. Rigid and flex layers will have different dielectrics and copper types. If all the high-speed signals reside within the rigid layers only and do not span the flex region, concentrate just on those rigid layers and associated materials. For this discussion, however, let's assume that one or more of the flex layers will be involved.

Read more: High-Speed Rigid-flex

Three methods for incorporating non-heating leads into a heater pattern.

A flexible heater is needed where Constantan or Inconel is used for the heating area. Is there a way to incorporate a resistive layer into a standard flex circuit to have non-heating (copper) leads going to the heater pattern?

Answer: Yes, this is a common request and can certainly be done. Several methods are used to accomplish this, with limitations. A couple of these methods require selective plating of copper onto the resistive alloy element traces to lower the resistance, or using plated vias on other layers to make the non-heating connections. This works well on copper/nickel alloys like CuNi 715 or Constantan, but not so much so on Inconel 600 (these are the three most common resistive alloys used in flexible heater construction). The Inconel restriction is covered in more depth later in this column.

Read more: Flexible Heater with Non-Heating Leads

Know what details to include – or not include – in the flexible circuit drawing.

Since our most recent column covered drawing notes for flexible circuits, this may be a good time to go over many of the other features a good flexible circuit drawing should include, and maybe a few things to avoid.

Along with the drawing notes, the rest of the drawing features help define the details of the part as well as some of the acceptability requirements.

For starters, drill tables are important to help describe via structures. The manufacturer needs to know which holes are which. If there are filled vias and/or via-in-pad-plated-over (VIPPO), for instance, they are identifiable with a flag note, or segregate filled from non-filled holes on the table.

Fabricators need to understand your via strategy. Is this a simple through-hole construction, or are buried, blind and/or microvias employed? Sometimes we see blind vias overlapping layers; for example, one blind via from layer 1 to 8 and another from layer 12 to 6. Sounds cool on paper (or in CAD), but we can't do that. The fabricator can help you align the via choices with cost and reliability.

Read more: Completing Your Drawing

Page 2 of 15