How to easily check current limits between a DC-DC converter and an FPGA. 

The design of power-supply structures on PCBs is not trivial. It requires careful consideration and techniques to achieve the best performance. Today’s high-pin-count devices need efficient power distribution systems permitting high-speed/high-frequency switching. The space available on PCBs is increasingly scarce. Thus, engineers fight for every square millimeter, using multiple layers for the layout of signal nets and power areas, parts of the power distribution which are then connected using dedicated power distribution network (PDN) via structures.

The narrowing of various supply voltages, coupled with increasing IC complexity and the number of voltage rails required, makes power integrity analysis inevitable for high-speed designs. This applies to AC as well as DC effects. The most compelling evidence is that modern circuits like (LP-)DDR memories operate at very low voltages (LP-DDR4 at 1.1V, for example).

To continue reading, please log in or register using the link in the upper right corner of the page.


Submit to FacebookSubmit to Google PlusSubmit to TwitterSubmit to LinkedInPrint Article