Martin Cotton

The highest-speed boards don’t necessarily need the highest-performance materials.

High-tech product developers have been able to take advantage of immense advances in the capabilities of electronic components – mostly among processors, FPGAs and ASSPs, which continue to follow the trend implied by Moore’s Law: to deliver incredible new innovations considered impossible or science-fiction fantasy just a couple of product generations before. As fantastic as this might be, there is a problem: end-users are learning to expect – even demand – the impossible on an ongoing basis.

Read more: Knowledge Delivers Economy: Designing for SI at the Right Price

Martin CottonSignal-integrity challenges are becoming more pressing across all frequencies, and materials technologies are evolving in response.

As the IoT gathers pace, keeping people – and, increasingly, things – connected involves shifting huge quantities of data. Handling the volume and speed imposes immense engineering challenges in all the various elements: handsets, IoT gateways, telco core networks. Even today’s cars are part of this high-performance information infrastructure, as manufacturers want to position value-added services like infotainment and e-call emergency care. And as the data get aggregated at various points into the network core, economics means they’re viewed as a commodity. The more that can be moved in a given time, the lower the cost per bit.

Read more: Seeking Material Gains – An Engineering Essential