Mike BuetowI sat with Irene Sterian at the SMTAI technical committee recognition dinner in September. (As an aside, if you’ve never had the pleasure of speaking with Irene, you really should find the time. She could make rubber chicken seem interesting.) Amid conversation on IoT, islands of St. Bernards, Quebec City, Elon Musk and cats, we got to talking about disruptive technology.

It was one of those conversations where you completely abandon the good manners your mother taught you, as you keep interrupting the other party out of excitement about the topic.

To be clear, I believe “disruption” is often an inflated term. Most of what we call disruptive is really just “painful to a certain segment of people or business.” Take ride-sharing, for instance. Type in “Uber” or “Lyft” and “disruptive,” and a Google search returns a combined 850,000 results. But what have those businesses truly changed? We still use what is essentially 100-year-old technology – cars – to get from Point A to Point B. Ride-sharing may have altered the value of the municipal taxi, but it certainly did not change the transportation industry.

Read more: Disruptive Thinking

Mike BuetowThe end is nigh for lead in solder, as our columnist Tim O’Neill wrote in July in CIRCUITS ASSEMBLY.

Rules governing use of the materials – Directive 2015/863, aka RoHS 3 – are coming online and will be in full force by 2019.

Suppliers have until July 22, 2019, to meet the stricter provisions, which include no more than 0.1% lead in medical devices, which are joining consumer, industrial and other electronics products on the effectively banned list.

In “Life After SAC 305,” Tim poses the question, What comes next? Already, the future of commonplace unleaded alloys such as SAC is being questioned. As Tim writes, “It is even feasible SAC 305 will be dislodged by a new de facto alloy that better serves the needs of the market.”

Poor SAC. It entered this world under duress – a much-debated compromise that standards bodies and major OEMs agreed on only after reviewing nearly 80 other alloys.

Read more: Elemental Questions

Mike BuetowOver the past couple months, I took my now 14-year-old on his first electronics manufacturing factory tours. He had visited a vocational school with his 8th grade class, but I think it really opened his eyes to what real-life manufacturing looks like. He’s not considering vocational school, but I think it’s important that he – and all kids his age – understand what really goes on in (well-run) factories.

As background, “14” knows what a circuit board is, but has no knowledge of how they are made or assembled. At IMI PCB and Lightspeed Manufacturing, both located in Haverhill, MA, he was able to see the basic operations up close, and listened to explanations of how boards are transformed from digital 0s and 1s and schematics to large green (or other colored) panels and arrays, and then screened with solder paste and assembled, and (sometimes) reworked. Both plants are low-volume, high-mix operations, which altered his impression somewhat, for as a kid with multiple handhelds of his own, he naturally expected to see machines pumping out cellphone boards every three seconds.  

Before he entered, I asked what he was expecting to see inside. “Mainly machines,” he said, “because since the Industrial Revolution and the invention of mass production, we are in an age where machines are huge parts of our lives. I think the machines are doing the work, and people are just here to help run them.” He was in for some surprises.

Read more: Smells Like Teen Spirit

Page 7 of 113